Frequentist Optimality of Bayesian Wavelet Shrinkage Rules for Gaussian and Non-gaussian Noise1 by Marianna Pensky
نویسنده
چکیده
The present paper investigates theoretical performance of various Bayesian wavelet shrinkage rules in a nonparametric regression model with i.i.d. errors which are not necessarily normally distributed. The main purpose is comparison of various Bayesian models in terms of their frequentist asymptotic optimality in Sobolev and Besov spaces. We establish a relationship between hyperparameters, verify that the majority of Bayesian models studied so far achieve theoretical optimality, state which Bayesian models cannot achieve optimal convergence rate and explain why it happens.
منابع مشابه
Bayesian Decision Theoretic Scale-adaptive Estimation of a Log-spectral Density
The problem of estimating the log-spectrum of a stationary Gaussian time series by Bayesianly induced shrinkage of empirical wavelet coefficients is studied. A model in the wavelet domain that accounts for distributional properties of the log-periodogram at levels of fine detail and approximate normality at coarse levels in the wavelet decomposition, is proposed. The smoothing procedure, called...
متن کاملFrequentist Optimality of Bayes Factor Estimators in Wavelet Regression Models
We investigate the theoretical performance of Bayes factor estimators in wavelet regression models with independent and identically distributed errors that are not necessarily normally distributed. We compare these estimators in terms of their frequentist optimality in Besov spaces for a wide variety of error and prior distributions. Furthermore, we provide sufficient conditions that determine ...
متن کاملAnalysis of Multiresolution Image Denoising Schemes Using Generalized{gaussian Priors
In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaus-sian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavy{tailed priors. This allows us to show a simple relationship between diierentiability of the log{ prior at zero and the sparsity ...
متن کاملEstimation of Piecewise-smooth Functions by Amalgamated Bridge Regression Splines
We consider nonparametric estimation of a one-dimensional piecewise-smooth function observed with white Gaussian noise on an interval. We propose a two-step estimation procedure, where one first detects jump points by a wavelet-based procedure and then estimates the function on each smooth segment separately by bridge regression splines. We prove the asymptotic optimality (in the minimax sense)...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005