Frequentist Optimality of Bayesian Wavelet Shrinkage Rules for Gaussian and Non-gaussian Noise1 by Marianna Pensky

نویسنده

  • M. PENSKY
چکیده

The present paper investigates theoretical performance of various Bayesian wavelet shrinkage rules in a nonparametric regression model with i.i.d. errors which are not necessarily normally distributed. The main purpose is comparison of various Bayesian models in terms of their frequentist asymptotic optimality in Sobolev and Besov spaces. We establish a relationship between hyperparameters, verify that the majority of Bayesian models studied so far achieve theoretical optimality, state which Bayesian models cannot achieve optimal convergence rate and explain why it happens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Decision Theoretic Scale-adaptive Estimation of a Log-spectral Density

The problem of estimating the log-spectrum of a stationary Gaussian time series by Bayesianly induced shrinkage of empirical wavelet coefficients is studied. A model in the wavelet domain that accounts for distributional properties of the log-periodogram at levels of fine detail and approximate normality at coarse levels in the wavelet decomposition, is proposed. The smoothing procedure, called...

متن کامل

Frequentist Optimality of Bayes Factor Estimators in Wavelet Regression Models

We investigate the theoretical performance of Bayes factor estimators in wavelet regression models with independent and identically distributed errors that are not necessarily normally distributed. We compare these estimators in terms of their frequentist optimality in Besov spaces for a wide variety of error and prior distributions. Furthermore, we provide sufficient conditions that determine ...

متن کامل

Analysis of Multiresolution Image Denoising Schemes Using Generalized{gaussian Priors

In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaus-sian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavy{tailed priors. This allows us to show a simple relationship between diierentiability of the log{ prior at zero and the sparsity ...

متن کامل

Estimation of Piecewise-smooth Functions by Amalgamated Bridge Regression Splines

We consider nonparametric estimation of a one-dimensional piecewise-smooth function observed with white Gaussian noise on an interval. We propose a two-step estimation procedure, where one first detects jump points by a wavelet-based procedure and then estimates the function on each smooth segment separately by bridge regression splines. We prove the asymptotic optimality (in the minimax sense)...

متن کامل

Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model

Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005